Given:-
[tex]f(x)=\begin{cases}\frac{x^2-12x+27}{x-3} \\ 6px\end{cases}[/tex]To find the value of x=3.
From the question it is clear that the value of 3 lies within,
[tex]\frac{x^2-12x+27}{x-3}[/tex]Now we substituting the value of x=3. we get,
[tex]\begin{gathered} f(x)=\frac{x^2-12x+27}{x-3}_{} \\ f(3)=\frac{3^2-12\times3+27}{3-3} \\ f(3)=\frac{9-36+27}{0} \\ f(3)=\frac{0}{0} \end{gathered}[/tex]So the value of f(3)=0