Respuesta :

Given: A function

[tex]f(x)=e^{3x}[/tex]

Required: To approximate the value of the function when x=1 using the first six terms of the Maclaurin expansion.

Explanation: Maclaurin's expansion is a special case of Taylor's theorem. The terms of the expansion are as follows:

[tex]f(x)+\frac{f^{\prime}(x)}{1!}+\frac{f^{\prime\prime}(x)}{2!}+...[/tex]

So we need to find the following terms at x=1

[tex]\begin{gathered} f(1)=e^3 \\ f^{\prime}(1)=3e^3 \\ f^{\prime}^{\prime}(1)=9e^3 \\ f^{\prime}^{\prime}^{\prime}(1)=27e^3 \end{gathered}[/tex]

Further

[tex]e^x=1+x+\frac{x^2}{2!}+...[/tex]

We can write the given function as

[tex]e^{3x}=e^{-3}e^{3(x+1)}[/tex]

The series would be

[tex]e^{3(x+1)}=1+3(x+1)+\frac{3^2(x+1)^2}{2}+\frac{3^3(x+1)^3}{6}+\frac{3^4(x+1)^4}{24}+\frac{3^5(x+1)^5}{120}[/tex]

Solving further at x=1 gives

[tex]e^{3(x+1)}=1+3(x+1)+\frac{9}{2}(x+1)^2+\frac{27(x+1)^3}{6}+\frac{81(x+1)^4}{24}+\frac{243(x+1)^5}{120}[/tex]

Hence the required function is-

[tex]e^{-3}e^{3(x+1)}=e^{-3}(1+3(x+1)+\frac{9}{2}(x+1)^2+\frac{27(x+1)^3}{6}+\frac{81(x+1)^4}{24}+\frac{243(x+1)^5}{120})[/tex]

Now for x=1 we have

[tex]=e^{-3}(1+6+18+36+54+64.8)[/tex]

Which gives

[tex]\begin{gathered} =0.0497\times179.8 \\ =8.93606 \end{gathered}[/tex]

Final Answer: 8.93606

ACCESS MORE
EDU ACCESS