Given: A function
[tex]f(x)=e^{3x}[/tex]Required: To approximate the value of the function when x=1 using the first six terms of the Maclaurin expansion.
Explanation: Maclaurin's expansion is a special case of Taylor's theorem. The terms of the expansion are as follows:
[tex]f(x)+\frac{f^{\prime}(x)}{1!}+\frac{f^{\prime\prime}(x)}{2!}+...[/tex]So we need to find the following terms at x=1
[tex]\begin{gathered} f(1)=e^3 \\ f^{\prime}(1)=3e^3 \\ f^{\prime}^{\prime}(1)=9e^3 \\ f^{\prime}^{\prime}^{\prime}(1)=27e^3 \end{gathered}[/tex]Further
[tex]e^x=1+x+\frac{x^2}{2!}+...[/tex]We can write the given function as
[tex]e^{3x}=e^{-3}e^{3(x+1)}[/tex]The series would be
[tex]e^{3(x+1)}=1+3(x+1)+\frac{3^2(x+1)^2}{2}+\frac{3^3(x+1)^3}{6}+\frac{3^4(x+1)^4}{24}+\frac{3^5(x+1)^5}{120}[/tex]Solving further at x=1 gives
[tex]e^{3(x+1)}=1+3(x+1)+\frac{9}{2}(x+1)^2+\frac{27(x+1)^3}{6}+\frac{81(x+1)^4}{24}+\frac{243(x+1)^5}{120}[/tex]Hence the required function is-
[tex]e^{-3}e^{3(x+1)}=e^{-3}(1+3(x+1)+\frac{9}{2}(x+1)^2+\frac{27(x+1)^3}{6}+\frac{81(x+1)^4}{24}+\frac{243(x+1)^5}{120})[/tex]Now for x=1 we have
[tex]=e^{-3}(1+6+18+36+54+64.8)[/tex]Which gives
[tex]\begin{gathered} =0.0497\times179.8 \\ =8.93606 \end{gathered}[/tex]Final Answer: 8.93606