find x of QR? quadrilateral JKLM & PQRS are similar

x=3.2
Explanation
As the figures are similar we can make a proporiton
so
Step 1
let
[tex]\text{ratio}=\frac{longest\text{ side}}{\text{smallest side}}[/tex]hence
for figure JKLM
[tex]\begin{gathered} \text{ratio}_1=\frac{JK}{LK} \\ \text{ratio}_1=\frac{7}{2} \end{gathered}[/tex]for figure PQRS
[tex]\begin{gathered} ratio_2=\frac{PQ}{RQ} \\ ratio_2=\frac{11.2}{x} \end{gathered}[/tex]the ratio is the same, so the proportion is
[tex]\text{ratio}_1=ratio_2[/tex]replace
[tex]\begin{gathered} \text{ratio}_1=ratio_2 \\ \frac{7}{2}=\frac{11.2}{x} \end{gathered}[/tex]Step 2
solve for x
[tex]\begin{gathered} \frac{7}{2}=\frac{11.2}{x} \\ \text{cross multiply } \\ 7\cdot x=2\cdot11.2 \\ 7x=22.4 \\ \text{divide both sides by 7} \\ \frac{7x}{7}=\frac{22.4}{7} \\ x=3.2 \end{gathered}[/tex]therefore, the answer is
x=3.2
I hope this helps you