Respuesta :

Given:

[tex]\begin{gathered} FV=14500 \\ n=4 \\ t=2\frac{1}{2}=2.5 \\ r=8\%=\frac{8}{100}=0.08 \end{gathered}[/tex]

The formula for finding the present value is

[tex]PV=\frac{FV}{(1+\frac{r}{n})^{nt}}[/tex]

Substitute

[tex]\begin{gathered} PV=\frac{14500}{(1+\frac{0.08}{4})^{4\times2.5}} \\ PV=\frac{14500}{(1+0.02)^{10}} \\ PV=\frac{14500}{1.02^{10}} \\ PV=\frac{14500}{1.219} \\ PV=11895.05 \end{gathered}[/tex]

hence, the present value is $11,895.05

ACCESS MORE
EDU ACCESS