Solution
We are given the equation
[tex]T=Ae^{-kt}+C[/tex]
Room temperature, C = 73 degrees
Temperature at time t = 0, is T = 174 degrees
[tex]\begin{gathered} T=Ae^{-kt}+C \\ 174=Ae^0+73 \\ 174=A+73 \\ A=174-73 \\ A=101 \end{gathered}[/tex]
Therefore, the equation becomes
[tex]T=101e^{-kt}+73[/tex]
We want to find t = ?, when T = 131 degrees and k = 0.0688919
[tex]\begin{gathered} T=101e^{-0.0688919t}+73 \\ 131=101e^{-0.0688919t}+73 \\ 131-73=101e^{-0.0688919t} \\ 58=101e^{-0.0688919t} \\ e^{-0.0688919t}=\frac{58}{101} \\ e^{-0.0688919t}=\frac{58}{101} \\ -0.0688919t=ln(\frac{58}{101}) \\ t=-\frac{1}{0.0688919}ln(\frac{58}{101}) \\ t=8.051418328 \\ t=8.05minutes\text{ \lparen to two decimal places\rparen} \end{gathered}[/tex]
Therefore, the answer is
[tex]8.05minutes[/tex]