I need a break down of how to resolve this question.

...
SOLUTION
Let us obtain the coordinates of the point representing Jane's house;
[tex]ie\text{ \lparen-5,-2\rparen}[/tex]The coordinates of the friend's house is given as;
[tex]ie\text{ \lparen3,-4\rparen}[/tex]Now, the formula for calculating the distance between two points is given as;
[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex][tex]\begin{gathered} Distance=\text{ }\sqrt{(3-(-5))^2+(-4-(-2))^2} \\ Distance=\text{ }\sqrt{8^2+(-2)^2}=\sqrt{64+4}\text{ =}\sqrt{68}=\text{ }\sqrt{4\times17}\text{ =2}\sqrt{17\text{ }}units \end{gathered}[/tex]THE DISTANCE BETWEEN THE HOUSES IS:
[tex]2\sqrt{17}\text{ }units[/tex]