Select all the correct figures.Select the figures with a volume greater than 400 cubic centimeters.

Volume of figure 1
The figure is a Cuboid
The formula for the volume of a cuboid is,
[tex]V=lwh[/tex]Given:
[tex]l=14cm,w=5cm,h=6cm[/tex]Therefore,
[tex]\begin{gathered} V=14\times5\times6=420 \\ \therefore V=420cm^3 \end{gathered}[/tex]Volume of figure 2
The figure is a Cylinder.
The formula for the volume of a cylinder is,
[tex]V=\pi r^2h[/tex]Given:
[tex]r=3,h=14[/tex]Therefore,
[tex]\begin{gathered} V=\frac{22}{7}\times3\times3\times14=22\times3\times3\times2=396 \\ \therefore V=396cm^3 \end{gathered}[/tex]Volume of figure 3
The figure is a Cone
The formula for the volume of a cone is,
[tex]V=\frac{1}{3}\pi r^2h[/tex]Given:
[tex]r=5,h=15[/tex]Therefore,
[tex]\begin{gathered} V=\frac{1}{3}\times\pi\times5^2\times15=392.69908 \\ \therefore V=392.69908cm^3 \end{gathered}[/tex]Volume of figure 4
The figure is a Sphere
The formula for the volume of a sphere is,
[tex]V=\frac{4}{3}\pi r^3[/tex]Given:
[tex]r=5[/tex]Therefore,
[tex]\begin{gathered} V=\frac{4}{3}\times\pi\times5^3=523.59878 \\ \therefore V=523.59878cm^3 \end{gathered}[/tex]Volume of figure 5
The figure is a Rectangle-based pyramid
The formula for the volume of a rectangle-based pyramid is,
[tex]V=\frac{1}{3}lwh[/tex]Given:
[tex]l=10cm,w=9cm,h=12[/tex]Therefore,
[tex]\begin{gathered} V=\frac{1}{3}\times10\times9\times12=360 \\ \therefore V=360cm^3 \end{gathered}[/tex]Hence, the figures with a volume greater than 400 cubic centimeters are
[tex]\begin{gathered} Figure\text{1\lparen Cuboid\rparen with the volume of 420cm}^3 \\ Figure4\text{ \lparen Sphere\rparen with the volume of 523.59878}cm^3 \end{gathered}[/tex]