Respuesta :

If we do not integrate directly, we need to differentiate the answers and check, so let's start:

a)

[tex](\frac{1}{16}x^4e^{4x}-1)^{\prime}=\frac{1}{16}(4x^3e^{4x}+x^4e^{4x}4)=e^{4x}x^3\frac{4}{16}(1+x)[/tex]

So we discard this option.

b)

[tex](\frac{1}{128}e^{4x}(32x^3-24x^2+12x-3)+10)^{\prime}=\frac{1}{128}(4e^{4x}(32x^3-24x^2+12x-3)+e^{4x}(96x^2-48x+12))[/tex]

If we simply:

[tex]\frac{1}{128}e^{4x}(128x^3-96x^2+48x-12+96x^2-48x+12)[/tex]

This is equal to:

[tex]e^{4x}x^3[/tex]

Then the correct answer is B.

RELAXING NOICE
Relax