I need help with this practice problem solving I could not get the entire problem in one photo so I will send an additional photo of the rest

I need help with this practice problem solving I could not get the entire problem in one photo so I will send an additional photo of the rest class=

Respuesta :

Answer:

[tex]\frac{\cos x}{1-\sin x}=\frac{1}{\cos x}+\frac{\sin x}{\cos x}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{(1+\sin x)\cdot\cos x}{1-\sin ^2x}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{(1+\sin x)\cdot\cos x}{(1-\sin^{}x)(1+\sin x)}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{\cos x}{1-\sin x}[/tex]

Explanation:

First, we realise that

[tex]\sec x=\frac{1}{\cos x}[/tex]

and

[tex]\tan x=\frac{\sin x}{\cos x}[/tex]

therefore,

[tex]\sec x+\tan x=\frac{1}{\cos x}+\frac{\sin x}{\cos x}[/tex]

Now,

[tex]\frac{1}{\cos x}+\frac{\sin x}{\cos x}=\frac{1+\sin x}{\cos x}[/tex]

Using the fact that

[tex]\frac{1}{\cos x}=\frac{\cos x}{\cos^2x}=\frac{\cos x}{1-\sin^2x}[/tex]

Therefore,

[tex]\frac{1+\sin x}{\cos x}=\frac{\cos x(1+\sin x)}{1-\sin^2x}[/tex][tex]=\frac{\cos x(1+\sin x)}{(1-\sin x)(1+\sin x)}=\frac{\cos x}{1-\sin x}[/tex]

Hence, we have shown that

[tex]\boxed{\sec x+\tan x=\frac{\cos x}{1-\sin x}\text{.}}[/tex]

RELAXING NOICE
Relax