I need help with this practice problem solving I could not get the entire problem in one photo so I will send an additional photo of the rest

Answer:
[tex]\frac{\cos x}{1-\sin x}=\frac{1}{\cos x}+\frac{\sin x}{\cos x}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{(1+\sin x)\cdot\cos x}{1-\sin ^2x}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{(1+\sin x)\cdot\cos x}{(1-\sin^{}x)(1+\sin x)}[/tex][tex]\frac{\cos x}{1-\sin x}=\frac{\cos x}{1-\sin x}[/tex]Explanation:
First, we realise that
[tex]\sec x=\frac{1}{\cos x}[/tex]and
[tex]\tan x=\frac{\sin x}{\cos x}[/tex]therefore,
[tex]\sec x+\tan x=\frac{1}{\cos x}+\frac{\sin x}{\cos x}[/tex]Now,
[tex]\frac{1}{\cos x}+\frac{\sin x}{\cos x}=\frac{1+\sin x}{\cos x}[/tex]Using the fact that
[tex]\frac{1}{\cos x}=\frac{\cos x}{\cos^2x}=\frac{\cos x}{1-\sin^2x}[/tex]Therefore,
[tex]\frac{1+\sin x}{\cos x}=\frac{\cos x(1+\sin x)}{1-\sin^2x}[/tex][tex]=\frac{\cos x(1+\sin x)}{(1-\sin x)(1+\sin x)}=\frac{\cos x}{1-\sin x}[/tex]Hence, we have shown that
[tex]\boxed{\sec x+\tan x=\frac{\cos x}{1-\sin x}\text{.}}[/tex]