I need help answering thisIf you can, simply show your work

we have that
To find the sum of the first Sn terms of a geometric sequence use the formula
[tex]S_n=\frac{a_1\cdot(1-r^n)}{1-r}[/tex]where
a1=120 -----> first term
n=8
Find out the common ratio r
we have
a1=120
a2=-80
a3=160/3
so
a3/a2=(160/3)/(-80)=-2/3
a2/a1=-80/120=-2/3
so
r=2/3
substitute given values in the formula
[tex]S_8=\frac{120\cdot(1-(-\frac{2}{3}^8))}{1+\frac{2}{3}}[/tex][tex]S_8=\frac{120\cdot(1-\frac{256}{6,561}^{})}{\frac{5}{3}}[/tex][tex]\begin{gathered} S_8=72\cdot(\frac{6,305}{6,561}^{}) \\ S_8=\frac{453,960}{6,561}^{} \end{gathered}[/tex]Simplify