Respuesta :

Given:

[tex]\frac{x}{(6x-7)(5x+1)}[/tex]

Required:

We need to find the partial decomposition of the given rational expression.

Explanation:

Use the partial decomposition formula.

[tex]\frac{x}{(6x-7)(5x+1)}=\frac{A}{(6x-7)}+\frac{B}{(5x+1)}[/tex]

[tex]\frac{x}{(6x-7)(5x+1)}=\frac{A(5x+1)}{(6x-7)(5x+1)}+\frac{B(6x-7)}{(5x+1)(6x-7)}[/tex]

[tex]\frac{x}{(6x-7)(5x+1)}=\frac{A(5x+1)+B\left(6x-7\right)}{(6x-7)(5x+1)}[/tex]

Equate the numerator of both sides since the denominator of both sides of the equation is equal.

[tex]x=A(5x+1)+B\lparen6x-7)[/tex]

Set x =-1/5 and substitute in the equation to find the value of B.

[tex]-\frac{1}{5}=A(5(-\frac{1}{5})+1)+B\lparen6(-\frac{1}{5})-7)[/tex]

[tex]-\frac{1}{5}=A(-1+1)+B\lparen-\frac{6}{5}-7)[/tex]

[tex]-\frac{1}{5}=B\lparen-\frac{6}{5}-7\times\frac{5}{5})[/tex]

[tex]-\frac{1}{5}=B\lparen\frac{-6}{5}-\frac{35}{5})[/tex]

[tex]-\frac{1}{5}=B\lparen\frac{=6-35}{5})[/tex]

[tex]-\frac{1}{5}=B\lparen\frac{-41}{5})[/tex]

Solve for B.

[tex]-\frac{1}{5}\times(\frac{-5}{41})=B\lparen\frac{-41}{5})\times(\frac{-5}{41})[/tex]

[tex]\frac{1}{41}=B[/tex]

We get B=1/41.

Set x =0 and substitute x=0 and b =1/41 in the equation to find the value A.

[tex]0=A(5(0)+1)+\frac{1}{41}\lparen6(0)-7)[/tex]

[tex]0=A+\frac{1}{41}\lparen-7)[/tex]

[tex]0=A-\frac{7}{41}[/tex]

Solve for A.

[tex]0+\frac{7}{41}=A-\frac{7}{41}+\frac{7}{41}[/tex][tex]A=\frac{7}{41}[/tex]

We get A=7/41.

[tex]Substitute\text{ A =}\frac{7}{41}\text{ and B=}\frac{1}{41}\text{ in the equation }\frac{x}{(6x-7)(5x+1)}=\frac{A}{(6x-7)}+\frac{B}{(5x+1)}.[/tex]

[tex]\frac{x}{(6x-7)(5x+1)}=\frac{7}{41(6x-7)}+\frac{1}{41(5x+1)}[/tex]

Final answer:

[tex]\frac{7}{41(6x-7)}+\frac{1}{41(5x+1)}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico