Can you please help me translate the argument into symbolic form?

Let p be: John goes to the beach
Let q be: He will go surfing.
Then in symbolic form, the argument becomes:
[tex]\begin{gathered} p\Rightarrow q \\ p \\ ----------- \\ \therefore q \end{gathered}[/tex]p ⇒ q
p
---------------------
∴ q
An argument is valid if the conjuction of the premises implies the conclusion.
p | q | p ⇒ q | (p ⇒ q) ∧ p | [(p ⇒ q) ∧ p] ⇒ q
---------------------------------------------------------------------\
F | F | T | F | T
F | T | T | F | T
T | F | F | F | T
T | T | T | T | T
The table above shows that the argument is a tautology.
Hence, the argument is valid