SOLUTION
Define a variable for the unkwons
[tex]\begin{gathered} \text{Let } \\ A\text{ dozen of doughnuts cost=\$x} \\ A\text{ dozen of Croissant cost=\$y} \end{gathered}[/tex]
Then
6 dozen of doughnuts and 2 dozen of croissant cost $42, is written as
[tex]6x+2y=42\ldots\text{equation 1}[/tex]
Similarly
$40 for 2 dozen of doughnuts and 5 dozen of croissant is witten as
[tex]2x+5y=40\ldots\text{equation 2}[/tex]
Applying Elimination to solve the two system of equation, we have
[tex]\begin{gathered} 6x+2y=42\ldots\text{equation 1} \\ 2x+5y=40\ldots\text{equation 2} \\ To\text{ eliminate x multiply equation 2 by 3 and equation 1 by 1} \\ 1\times(6x+2y=42)\rightarrow6x+2y=42 \\ 3\times(2x+5y=40)\rightarrow6x+15y=120 \end{gathered}[/tex]
Then, subtract the equation obtained above
[tex]\begin{gathered} 6x+2y=42 \\ 6x+15y=120 \\ -13y=-78 \\ \text{Divide both sides by -13} \\ -\frac{13y}{-13}=-\frac{78}{-13} \\ \\ y=6 \end{gathered}[/tex]
Hence Y=6
Then you Eliminate Y from eqaution 1 an d 2 by
Multiplying equation 1 by 5 and equation 2 by 2
[tex]\begin{gathered} 5\times(6x+2y=42)\rightarrow30x+10y=210 \\ 2\times(2x+5y=40)\rightarrow4x+10y=80 \end{gathered}[/tex]
The sunbtract the equation obtained
[tex]\begin{gathered} 30x+10y=210 \\ 4x+10y=80 \\ 26x=130 \\ \text{Divide both sides by 26} \\ \frac{26x}{26}=\frac{130}{26} \\ \\ x=5 \end{gathered}[/tex]
Hence X=5
Therefore
A Dozen of doughnuts cost $5
A Dozen of Croisant cost $6