Respuesta :

A)

Replace y=f(x), isolate x and then replace x=f^-1(y) to find the inverse function:

[tex]\begin{gathered} f(x)=x+7 \\ \Rightarrow y=x+7 \\ \Rightarrow y-7=x \\ \Rightarrow x=y-7 \\ \Rightarrow f^{-1}(y)=y-7 \\ \\ \therefore f^{-1}(x)=x-7 \end{gathered}[/tex]

B)

Evaluate f at f^-1(x) and f^-1 at f(x):

[tex]\begin{gathered} f(f^{-1}(x))=f^{-1}(x)+7=x-7+7=x \\ f^{-1}(f(x))=f(x)-7=x+7-7=x \end{gathered}[/tex]

Therefore, the answer is option A)

[tex]f^{-1}(x)=x-7\text{ for all x}[/tex]

ACCESS MORE
EDU ACCESS