Given:
Interest rate = 10%
Money deposit = 2000
Find-:
Amount after
(1) One year
(2) Second year
(3) Three year
Explanation-:
The compound interest rate formula is:
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]Where,
[tex]\begin{gathered} A=\text{ Final amount} \\ \\ P=\text{ Initial principal amount} \\ \\ r=\text{ Interest rate } \\ \\ n=\text{ Number of time applied per time} \\ \\ t=\text{ Time in year} \end{gathered}[/tex]Foe one year
t=1
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ \\ A=2000(1+\frac{10}{100})^{1\times1} \\ \\ A=2000(1+0.1)^1 \\ \\ A=2000(1.1) \\ \\ A=2200 \end{gathered}[/tex]After one year amount is 2200.
(ii)
For 2 years
t = 2,
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ \\ A=2000(1+\frac{10}{100})^{1\times2} \\ \\ A=2000(1+0.1)^2 \\ \\ A=2000(1.1)^2 \\ \\ A=2000\times1.21 \\ \\ A=2420 \end{gathered}[/tex]After two year amount is 2420.
(iii)
For three years
t=3
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ \\ A=2000(1+\frac{10}{100})^{1\times3} \\ \\ A=2000(1+0.1)^3 \\ \\ A=2000(1.1)^3 \\ \\ A=2000\times1.331 \\ \\ A=2662 \end{gathered}[/tex]After 3 year amount is 2662