Respuesta :

ANSWER

m∠2 = 137°

EXPLANATION

By the angles of intersecting chords theorem, we have,

[tex]m\angle2=\frac{1}{2}(mVW+mZX)[/tex]

We don't know the measure of these two arcs, but we do know the measures of arcs VX and WZ. The sum of all the measures of consecutive arcs is 360°, so,

[tex]mVW+mWZ+mZX+mVX=360[/tex]

Group them,

[tex](mVW+mZX)+(mWZ+mVX)=360[/tex]

Solve for (mVW+mZX),

[tex](mVW+mZX)=360-\left(mWZ+mVX\right)[/tex]

Replace the known values,

[tex](mVW+mZX)=360-(38+48)=360-86=274[/tex]

Finally,

[tex]m\operatorname{\angle}2=\frac{1}{2}(mVW+mZX)=\frac{1}{2}\cdot274\degree=137\degree[/tex]

Hence, the measure of angle 2 is 137°.

RELAXING NOICE
Relax