Respuesta :
Step 1:
Write the two equation
5x - 3y = 8
7x - 5y = 4
Step 2
Write in matrix form
[tex]\begin{gathered} \begin{bmatrix}{5} & {-3} \\ {7} & {-5}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{8} & {} \\ {4} & {}\end{bmatrix} \\ Inverse\text{ A}^{-1}\text{ = }\frac{Adjoint}{|A|} \\ A^{-1}\text{ = }\begin{bmatrix}{5} & {-3} \\ {7} & {-5}\end{bmatrix}^{-1} \\ \begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\text{ }\begin{bmatrix}{5} & {-3} \\ {7} & {-5}\end{bmatrix}^{-1}\begin{bmatrix}{8} & {} \\ {4} & {}\end{bmatrix} \end{gathered}[/tex]Step 3:
[tex]\begin{gathered} \begin{bmatrix}{5} & {-3} \\ {7} & -{5}\end{bmatrix} \\ Determinant\text{ = -25+21 = -4} \\ Cofactor\text{ = }\begin{bmatrix}{-5} & {-7} \\ {3} & {5}\end{bmatrix} \\ Adjoint\text{ = }\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix} \\ A^{-1}\text{ = }\frac{1}{-4}\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix} \end{gathered}[/tex]Step 4:
[tex]\begin{gathered} \begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}\text{ = }\frac{1}{-4}\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix}\begin{bmatrix}{8} & {} \\ {4} & {}\end{bmatrix} \\ =\text{ }\frac{1}{-4}\begin{bmatrix}{-40+12} & {} \\ {-56+20} & {}\end{bmatrix} \\ =\text{ }\frac{1}{-4}\begin{bmatrix}{-28} & {} \\ {-36} & {}\end{bmatrix} \\ \begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\text{ }\begin{bmatrix}{7} & {} \\ {9} & {}\end{bmatrix} \\ x\text{ = 7 , y = 9} \end{gathered}[/tex]Final answer
[tex]A^{-1}\text{ = }\frac{1}{-4}\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix}\text{ , x = 7 , y = 9}[/tex]Otras preguntas
