Fine the end behavior and x-value of holeEquation is to the right

Given the function:
[tex]\: f\mleft(x\mright)=\frac{x+1}{\left(x-3\right)\left(x^2-1\right)}[/tex]The end behaviour of the function f(x) describes the behaviour of the function as x approaches +∞ and -∞.
When x approaches +∞,
[tex]\lim _{x\rightarrow\infty}f(x)=\text{ }\lim _{x\rightarrow\infty}\frac{x+1}{(x-3)(x^2-1)}=0[/tex]Thus, as x approaches +∞, the function f(x) approaches zero.
When x approaches -∞,
[tex]\lim _{x\rightarrow-\infty}f(x)=\text{ }\lim _{x\rightarrow-\infty}\frac{x+1}{(x-3)(x^2-1)}=0[/tex]Thus, as x approaches -∞, the function f(x) approaches zero.
x-value of the hole:
For a rational function f(x) given as
[tex]f(x)=\frac{p(x)}{q(x)}[/tex]Provided that p(x) and q(x) have a common factor (x-a), the function f(x) will have a hole at x=a.
Thus, from the function f(x)
[tex]f(x)=\frac{x+1}{(x-3)(x^2-1)}[/tex]by expansion, we have
[tex]f(x)=\frac{x+1}{(x-3)(x^{}-1)(x+1)}[/tex]The expression (x-1) is a common factor of the numerator and the denominator.
Thus,
[tex]\begin{gathered} x-1=0 \\ \Rightarrow x=1 \end{gathered}[/tex]Hence, the x-value of the hole is 1.