Respuesta :

The equation is given by:

[tex]\begin{gathered} p(x)=3x^2+6x \\ p^{\prime}(x)=6x+6 \end{gathered}[/tex]

Slope of tangent will be:

[tex]p^{\prime}(-1,5)=m=6(-1)+6=0[/tex]

The equation of tangent is given by:

[tex]\begin{gathered} y-5=0(x-(-1)) \\ y=5 \end{gathered}[/tex]

The line is tangent if it touches the curve at a single point:

Substitute P(x)=5 to get:

[tex]\begin{gathered} 3x^2+6x=5 \\ 3x^2+6x-5=0 \end{gathered}[/tex]

The line is tangent if the discriminant is 0 so it follows:

[tex]\Delta=6^2-4(3)(-5)=96>0[/tex]

Hence the roots of the equation are real and unequal.

Hence there is no tangent that can be drawn from point (-1,5) to the given curve.

ACCESS MORE
EDU ACCESS
Universidad de Mexico