Respuesta :

[tex]\text{rate of increase i n number of tr}ees\text{ planted per day = }(1.087)^w\text{ (option B)}[/tex]Explanation:[tex]f(w)\text{ = }12(1.79)^w[/tex]

The function represents trees planted per number of weeks

where w = weeks

To get the function for the number of trees planted per day, we will find the relationship between weeks and days

7 days = 1 week

let 1 day = x

cross multiply:

7(x) = 1

x = 1/7

So, 1 day = 1/7 week =

since w = week

1 day = 1/7 w

We will substitute 1/7 w for w in the function:

[tex]\begin{gathered} f(w)=12(1.79)^{\frac{1}{7}w} \\ \\ \text{rate of increase of tr}ees\text{ planted per day = }(1.79)^{\frac{1}{7}w} \end{gathered}[/tex]

Expanding the parentheisis:

[tex]\begin{gathered} (1.79^{})^{\frac{1}{7}w}\text{ =}(1.79^{\frac{1}{7}})^w \\ 1.79^{\frac{1}{7}}\text{ = }1.0867 \\ 1.79^{\frac{1}{7}}\text{ = }1.087\text{ (3 decimal place)} \end{gathered}[/tex][tex]\text{(1.79)}^{\frac{1}{7}w}=(1.087)^w[/tex]

Hence, rate of increase in the number of trees per day is (1.087)^w (option B)

RELAXING NOICE
Relax