a) V=-5000t+141200
b)after 13 years the bulldozerĀ“s value will be 76200
Explanation
Step 1
set the equation:
as the bulldozer depreciates linearly, we can use a linear function to represent the situatio.
a linear function has the form
[tex]\begin{gathered} y=\text{ mx+b} \\ where\text{ m is the slope and b is the y-intercept} \end{gathered}[/tex]
so
a) let t represent s the time
let V represents the value of the bulldozer
so, we have 2 coordinates
I)One company buys a new bulldozer for $141200
[tex]\begin{gathered} value=\text{ 141200} \\ time\text{ = 0} \\ so \\ P1(0,141200) \end{gathered}[/tex]
ii) Its salvage value at the end of 25 years is $16200,so
[tex]\begin{gathered} value=\text{ 16200} \\ time=25 \\ so \\ P2(25,16200) \end{gathered}[/tex]
b) now, we have 2 points, we can find the slope using the formula
the slope of line is given by:
[tex]slope=\frac{change\text{ in y }}{chang\text{e in x}}=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}[/tex]
then, let
[tex]\begin{gathered} P1(0,141200) \\ P2(25,16200) \end{gathered}[/tex]
replace to find the slope
[tex]\begin{gathered} slope=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ slope=\frac{16200-141200}{25-0}=\frac{-125000}{25}=-5000 \end{gathered}[/tex]
so, the slope of the line is -5000
c) finally,get the function of the line, use the slope-point equation
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ where\text{ m is the slope } \\ (x_1,y_1)\text{ is a well known point} \end{gathered}[/tex]
so,let
[tex]\begin{gathered} slope=-5000 \\ P(0,141200) \end{gathered}[/tex]
replace and solve for y
[tex]\begin{gathered} y-y_{1}=m(x-x_{1}) \\ y-141200=-5000(x-0) \\ y-141200=-5000x \\ add\text{ 141200in both sides} \\ y-141200+141200=-5,000x+141200 \\ y=-5000x+141200 \end{gathered}[/tex]
finally, rewrite the functino using the original variable
[tex]\begin{gathered} y=-5,000x+141,200 \\ V=-5000t+141200\Rightarrow equation \end{gathered}[/tex]
so,
a) V=-5000t+141200
Step 2
now, the value after 13 years,
to know that,let t = 13 and evaluate
[tex]\begin{gathered} \begin{equation*} V=-5000t+141200 \end{equation*} \\ V=-5000(13)+141200 \\ V=-65000+141200 \\ V=76200 \end{gathered}[/tex]
therefor, after 13 years the bulldozerĀ“s value will be 76200
I hope this helps you