Respuesta :

[tex]f(4)=364[/tex]

Explanation

[tex]f\mleft(n\mright)=f\mleft(n-1\mright)^2+3[/tex]

In a recursive formula, each term is defined as a function of its preceding term(s). A recursive formula designates the starting term, a1, and the nth term of the sequence, an

so, we can find the first 4 terms

Step 1

[tex]\begin{gathered} f\mleft(n\mright)=f\mleft(n-1\mright)^2+3 \\ f(1)=1 \\ f(2)=f(2-1)^2+3 \\ f(2)=f(1)^2+3 \\ f(2)=(1)^2+3 \\ f(2)=4 \\ f(3)=f(3-1)^2+3 \\ f(3)=f(2)^2+3 \\ f(3)=(4)^2+3 \\ f(3)=19 \\ f(4)=f(4-1)^2+3 \\ f(4)=f(3)^2+3 \\ f(4)=(19)^2+3 \\ f(4)=364 \end{gathered}[/tex]

hence, the answer is

[tex]f(4)=364[/tex]

I hope this helps you

ACCESS MORE
EDU ACCESS