Respuesta :

Answer:

227/210

Explanation:

First, we need to find the least common multiple between 21 and 10, so:

multiples of 21: 21, 42, 63, 84, 105, 126, 147, 168, 189, 210,...

multiples of 10: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210,...

Therefore, the minimum multiple is 210.

Now, to add the fractions, we need to rewrite the fractions as follows:

[tex]\begin{gathered} \frac{8}{21}=\frac{8\times10}{21\times10}=\frac{80}{210} \\ \frac{7}{10}=\frac{7\times21}{10\times21}=\frac{147}{210} \end{gathered}[/tex]

Finally, we can add the numerators of the fractions to get:

[tex]\frac{80}{210}+\frac{147}{210}=\frac{80+147}{210}=\frac{227}{210}[/tex]

Therefore, the answer is 227/210

ACCESS MORE
EDU ACCESS
Universidad de Mexico