Solution:
Given the points below
[tex]p\left(4,2\right)and\text{ }q\left(8,12\right)[/tex]To find the distance between two points, the formula is
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Where point p represents coordinates 1 and point q represents coordinates 2
Substitute the coordinates into the formula above
[tex]\begin{gathered} d=\sqrt{(8-4)^2+(12-2)^2} \\ d=\sqrt{4^2+10^2} \\ d=\sqrt{16+100} \\ d=\sqrt{116} \\ d=\sqrt{4\times29} \\ d=2\sqrt{29}\text{ units} \end{gathered}[/tex]Since, 1 unit represents 1 kilometer on the map,
Hence, the answer is
[tex]2\sqrt{29}\text{ km}[/tex]