+ 16x + 71 tion provided to write the vertex form equation of each parabola 2) y = x² - 2x - 5 y=ola-h2xmin Ye21XR125 Identify the vertex and axis of symmetry of each. Then sketch the graph. 15) f(x)=-3(x - 2)2 - 4 16) S(x)=-1)+4 po

Respuesta :

Vertex

General equation of a parable

[tex]f(x)=a(x-h)^2+k[/tex]

where

[tex](h,k)[/tex]

is the vertex

for our equation

[tex]f(x)=-2(x+5)^2-2[/tex]

the vertex is

[tex](-5,-2)[/tex]

axis of symmetry

axis of symmetry is the x value of the vertex, then

[tex]x=-5[/tex]

Graph

we replace values on x to find points of the parable

for example x=0

[tex]\begin{gathered} f(0)=-2(0+5)^2-2 \\ f(0)=-2(5)^2-2 \\ f(0)=-2\times25-2 \\ f(0)=-50-2 \\ f(0)=-52 \end{gathered}[/tex]

x=-10

[tex]\begin{gathered} f(-10)=-2(-10+5)^2-2 \\ f(-10)=-2(-5)^2-2 \\ f(-10)=-2\times25-2 \\ f(-10)=-50-2 \\ f(-10)=-52 \end{gathered}[/tex]

our three points

[tex]\begin{gathered} (-5,-2) \\ (0,-52) \\ (-10,-52) \end{gathered}[/tex]

Ver imagen MarkaleO383942
RELAXING NOICE
Relax