Given
[tex]\begin{bmatrix}{2} & 3 \\ {1} & {1}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{40} & {} \\ 16 & {}\end{bmatrix}[/tex]
To solve for x and y.
Explanation:
It is given that,
[tex]\begin{bmatrix}{2} & 3 \\ {1} & {1}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{40} & {} \\ 16 & {}\end{bmatrix}[/tex]
That implies,
[tex]\begin{bmatrix}{2} & 3 \\ {1} & {1}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{40} & {} \\ 16 & {}\end{bmatrix}[/tex]
The solution to the given matrix is,
[tex]X=A^{-1}B[/tex]
Therefore,
[tex]\begin{gathered} A^{-1}=\frac{1}{|A|}\times adj(A) \\ \because adj(A)=\begin{bmatrix}{1} & {-3} \\ {-1} & {2}\end{bmatrix} \\ |A|=det\begin{bmatrix}{2} & {3} \\ {1} & {1}\end{bmatrix} \\ =2-3 \\ =-1 \\ \therefore A^{-1}=\frac{1}{-1}\begin{bmatrix}{1} & {-3} \\ {-1} & {2}\end{bmatrix} \\ =\begin{bmatrix}-{1} & {3} \\ {1} & -{2}\end{bmatrix} \end{gathered}[/tex]
Then,
[tex]\begin{gathered} X=\begin{bmatrix}-{1} & {3} \\ {1} & -{2}\end{bmatrix}\begin{bmatrix}{40} & \\ 16 & \end{bmatrix} \\ =\begin{bmatrix}{-40+48} & {} \\ {40-32} & \end{bmatrix} \\ \begin{bmatrix}{x} & \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{8} & {} \\ {8} & \end{bmatrix} \end{gathered}[/tex]
Hence, x=8 and y=8.