two student clubs were selling T-shirts and school notebooks to raise money for an upcoming school event. In the first few minutes, Club A sold two T-shirts and three notebooks, and made $40. Club B sold one T-shirt and one notebook for a total of $16. Use the given matrix equation to solve for the cost of T-shirts and notebooks sold. explain the steps that you took to solve this problem( FULL PROBLEM IN PHOTO)

two student clubs were selling Tshirts and school notebooks to raise money for an upcoming school event In the first few minutes Club A sold two Tshirts and thr class=

Respuesta :

Given

[tex]\begin{bmatrix}{2} & 3 \\ {1} & {1}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{40} & {} \\ 16 & {}\end{bmatrix}[/tex]

To solve for x and y.

Explanation:

It is given that,

[tex]\begin{bmatrix}{2} & 3 \\ {1} & {1}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{40} & {} \\ 16 & {}\end{bmatrix}[/tex]

That implies,

[tex]\begin{bmatrix}{2} & 3 \\ {1} & {1}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{40} & {} \\ 16 & {}\end{bmatrix}[/tex]

The solution to the given matrix is,

[tex]X=A^{-1}B[/tex]

Therefore,

[tex]\begin{gathered} A^{-1}=\frac{1}{|A|}\times adj(A) \\ \because adj(A)=\begin{bmatrix}{1} & {-3} \\ {-1} & {2}\end{bmatrix} \\ |A|=det\begin{bmatrix}{2} & {3} \\ {1} & {1}\end{bmatrix} \\ =2-3 \\ =-1 \\ \therefore A^{-1}=\frac{1}{-1}\begin{bmatrix}{1} & {-3} \\ {-1} & {2}\end{bmatrix} \\ =\begin{bmatrix}-{1} & {3} \\ {1} & -{2}\end{bmatrix} \end{gathered}[/tex]

Then,

[tex]\begin{gathered} X=\begin{bmatrix}-{1} & {3} \\ {1} & -{2}\end{bmatrix}\begin{bmatrix}{40} & \\ 16 & \end{bmatrix} \\ =\begin{bmatrix}{-40+48} & {} \\ {40-32} & \end{bmatrix} \\ \begin{bmatrix}{x} & \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{8} & {} \\ {8} & \end{bmatrix} \end{gathered}[/tex]

Hence, x=8 and y=8.

ACCESS MORE
EDU ACCESS