The free body diagram for the problem is shown below:
If the people don't slide down this means that the friction has to be equal to the Weight, then we have:
[tex]\begin{gathered} F_f-W=0 \\ F_f=W \\ \mu F_n=W \\ \mu=\frac{W}{F_n} \end{gathered}[/tex]
Now, from newton's second law we have that:
[tex]F_n=ma_c[/tex]
but
[tex]a_c=\frac{4\pi^2r}{T^2}[/tex]
then:
[tex]F_n=\frac{4\pi^2mr}{T^2}[/tex]
And then we have:
[tex]\begin{gathered} \mu=\frac{mg}{\frac{4\pi^2mr}{T^2}} \\ \mu=\frac{gT^2}{4\pi^2r} \end{gathered}[/tex]
Plugging the values given we have:
[tex]\begin{gathered} \mu=\frac{(9.8)(\frac{1}{0.537})^2}{4\pi^2(3.62)} \\ \mu=0.238 \end{gathered}[/tex]
Therefore the coefficient of friction is 0.238