Use the interval notation to represent all values of ex satisfying the given conditions.

Notice that solving the given problem is equivalent to solving
[tex]|3x-8|+2<8,[/tex]for x.
Adding -2 to both sides of inequality we get:
[tex]|3x-8|<8-2=6.[/tex]Now, recall that:
[tex]|a|Therefore, we can rewrite the last inequality as:[tex]-6<3x-8<6.[/tex]Adding 8 we get:
[tex]\begin{gathered} -6+8<3x-8+8<6+8, \\ 2<3x<14. \end{gathered}[/tex]Finally, dividing by 3, we get:
[tex]\frac{2}{3}The above result in interval notation is:[tex](\frac{2}{3},\frac{14}{3})\text{.}[/tex]Answer:
[tex](\frac{2}{3},\frac{14}{3})\text{.}[/tex]