.
Answer:
The function is given below as
[tex]n(t)=990e^{0.45t}[/tex]The exponential function is given below as
[tex]\begin{gathered} A(t)=A_0e^{rt} \\ t=time \\ A_0=initial\text{ number } \\ A(t)=number\text{ after time t} \\ r=rate \end{gathered}[/tex]By comparing coefficients, we will have
[tex]\begin{gathered} A_0=990 \\ r=0.45 \end{gathered}[/tex]Hence,
the rate will be
[tex]r=0.45\times100=45\%[/tex]Therefore,
The rate is
[tex]\Rightarrow45\%[/tex]Step 2:
To figure out the initial population, we will substitute t=0 in the function above
[tex]\begin{gathered} n(t)=990e^{0.45t} \\ n(0)=990e^{0.45\times0} \\ n(0)=990e^0 \\ n(0)=990 \end{gathered}[/tex]Hence,
The initial population of the culture is
[tex]\Rightarrow990[/tex]Step 3:
To figure out the number of bacteria at t=7, we will have
[tex]\begin{gathered} n(t)=990e^{0.45t} \\ n(7)=990e^{0.45\times7} \\ n(7)=990e^{3.15} \\ n(7)=990\times23.3361 \\ n(7)=23102.7 \\ n(7)=23103 \end{gathered}[/tex]Hence,
The number of bacteria at time t=7 will be
[tex]\Rightarrow23103[/tex]