Use synthetic division to rewrite the following fraction in the form q(x) + r(x)/d(x), where d(x) is the denominator of the original fraction, q(x) is the quotient, and r(x) is the remainder.

Use synthetic division to rewrite the following fraction in the form qx rxdx where dx is the denominator of the original fraction qx is the quotient and rx is t class=

Respuesta :

Answer

[tex]\begin{gathered} \text{Let the given function be:} \\ \\ f(x)=\frac{3x^3-8ix^2+5x+(7-5i)}{x-2i} \end{gathered}[/tex]

Using the long division method, we have

Expressing the given expression in the form g(x) + r(x)/d(x), we have

[tex]\begin{gathered} 3x^2-2ix+1+\frac{7-3i}{x-2i} \\ \text{Where} \\ g(x)=3x^2-2ix+1, \\ r(x)=7-3i\text{ and } \\ d(x)=x-2i \end{gathered}[/tex]

Ver imagen AsahN94961
ACCESS MORE
EDU ACCESS
Universidad de Mexico