Respuesta :

Explanation:

The given expression is

[tex]\frac{xy-zy}{y}\cdot\frac{xw-xy}{yz-yw}[/tex]

Then, we can multiply the fractions as

[tex]\begin{gathered} \frac{(xy-zy)(xw-xy)}{y(yz-yw)}=\frac{xy(xw)+xy(-xy)-zy(xw)-zy(-xy)}{y(yz)-y(yw)} \\ \\ =\frac{x^2yw-x^2y^2-xyzw+xy^2z}{y^2z-y^2w} \\ \\ =\frac{y(x^^2w-x^2y-xzw+xyz)}{y(yz-yw)} \end{gathered}[/tex]

Finally, we can simplify the y to get

[tex]\frac{x^2w-x^2y-xzw+xyz}{yz-yw}[/tex]

Answer:

So, the answer is

[tex]\frac{x^2w-x^2y-xzw+xyz}{yz-yw}[/tex]
ACCESS MORE