We can answer this question if we have into account that:
[tex]a^3+b^3=(a+b)\cdot(a^2-ab+b^2)[/tex]And
[tex]a^3-b^3=(a-b)\cdot(a^2+ab+b^2)[/tex]These are the cases for perfect cubes. Since we have that:
[tex]x^3_{}+125=x^3+5^3[/tex]Then, we have:
a = x
b = 5
[tex](x+5)\cdot(x^2-5x+5^2)=(x+5)\cdot(x^2-5x+25)[/tex]Then, the factored form of the perfect cubes is:
[tex](x+5)\cdot(x^2-5x+25)[/tex]