Answer::
[tex]\begin{gathered} (x-\frac{9}{2})^2=\frac{169}{4} \\ x=-2\text{ and x=11} \end{gathered}[/tex]
Explanation:
Given the quadratic equation:
[tex]x^2-9x-22=0[/tex]
To solve it by completing the square, follow the steps below:
Step 1: Take the constant to the right-hand side.
[tex]x^2-9x=22[/tex]
Step 2: Divide the coefficient of x by 2, square it and add it to both sides.
[tex]x^2-9x+(-\frac{9}{2})^2=22+(-\frac{9}{2})^2[/tex]
Step 3: Write the left-hand side as a perfect square.
[tex](x-\frac{9}{2})^2=\frac{169}{4}[/tex]
Step 4: Take the square root of both sides.
[tex]\begin{gathered} \sqrt{(x-\frac{9}{2})^2}=\pm\sqrt{\frac{169}{4}} \\ x-\frac{9}{2}=\pm\frac{13}{2} \end{gathered}[/tex]
Step 5: Solve for x.
[tex]\begin{gathered} x=\frac{9}{2}\pm\frac{13}{2}=\frac{9\pm13}{2} \\ \implies x=\frac{9+13}{2}\text{ or }x=\frac{9-13}{2}\text{ } \\ x=11\text{ or }x=-2 \end{gathered}[/tex]
So, we have:
[tex]\begin{gathered} Completing\; the\; square\; gives\; us\colon(x-\frac{9}{2})^2=\frac{169}{4} \\ x=-2\text{ and x=11} \end{gathered}[/tex]