Solution:
Given:
Based on the graph, it can be estimated that;
The vertex is at (0,-3) and the roots are at (-5,0) and (5,0)
Using the equation of a parabola in vertex form;
[tex]y=a(x-h)^2+k[/tex]
where;
[tex]\begin{gathered} (h,k)\text{ is the vertex} \\ h=0 \\ k=-3 \\ \\ Hence, \\ y=a(x-0)^2+(-3) \\ y=ax^2-3 \end{gathered}[/tex]
Using the point (5,0) to get the constant a;
[tex]\begin{gathered} x=5 \\ y=0 \\ \\ Hence,\text{ }y=ax^2-3 \\ 0=a(5^2)-3 \\ 3=25a \\ \frac{3}{25}=a \\ a=\frac{3}{25} \end{gathered}[/tex]
Hence, the equation of the parabola is;
[tex]\begin{gathered} y=ax^2-3 \\ y=\frac{3}{25}x^2-3 \end{gathered}[/tex]