1. Use the pair of functions given to find the value of each of the following combination of functions f(x)=x^2, g(x) = 12/(-10x+3)

EXPLANATION :
From the problem, we have the functions :
[tex]\begin{gathered} f(x)=x^2 \\ g(x)=\frac{12}{-10x+3} \end{gathered}[/tex](f - g)(8) is the difference of f(x) and g(x) at x = 8
Then :
[tex]\begin{gathered} (f-g)(x)=x^2-\frac{12}{-10x+3} \\ \\ (f-g)(8)=8^2-\frac{12}{-10(8)+3} \\ \\ =64-\frac{12}{-80+3} \\ \\ =64-\frac{12}{-77} \\ \\ =64+\frac{12}{77} \\ \\ =64\frac{12}{77}\quad or\quad\frac{4940}{77} \end{gathered}[/tex]ANSWER :
The answer is 64 12/77 or 4940/77