Respuesta :

we have that

B=5 degrees

C=125 degrees

b=200 units

step 1

Find out the measure of angle A

Remember that

the sum of the interior angles in any triangle must be equal to 180 degrees

so

A+B+C=180

substitute given values

A+5+125=180

A=180-130

A=50 degrees

step 2

Applying the law of sines

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Find out the value of a

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}[/tex]

substitute given values

[tex]\frac{\sin 50^o}{a}=\frac{\sin 5^o}{200}[/tex]

solve for a

[tex]a=\frac{200\cdot\sin 50^o}{\sin 5^o}[/tex]

a=1,757.9 units

step 3

Find out the value of c

[tex]\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

substitute given values

[tex]\frac{\sin 5^o}{200}=\frac{\sin 125^o}{c}[/tex][tex]c=\frac{200\cdot\sin 125^o}{\sin 5^o}[/tex]

c=1,879.7 units

RELAXING NOICE
Relax