Respuesta :
[tex]f(x)=-\frac{1}{4}\sqrt[]{8-4x}+1[/tex]
a)
The x-intercept can be found as:
[tex]\begin{gathered} f(x)=0 \\ so\colon \\ -\frac{1}{4}\sqrt[]{8-4x}+1=0 \\ -\frac{1}{4}\sqrt[]{8-4x}=-1 \\ \sqrt[]{8-4x}=4 \\ 8-4x=16 \\ 4x=8-16 \\ 4x=-8 \\ x=-\frac{8}{4} \\ x=-2 \end{gathered}[/tex]Therefore, the x-intercept is: (-2,0)
The y-intercept can be found evaluating the function for x = 0, so:
[tex]\begin{gathered} f(0)=-\frac{1}{4}\sqrt[]{8-4(0)}+1 \\ f(0)=1-\frac{\sqrt[]{2}}{2} \\ f(0)\approx0.29 \end{gathered}[/tex]b) The parent function for this is given by:
[tex]g(x)=\sqrt[]{x}[/tex]c)
1st: A reflection over y-axis:
[tex]\begin{gathered} y=g(-x) \\ y=\sqrt[]{-x} \end{gathered}[/tex]2nd: A horizontal compression:
[tex]\begin{gathered} y=g(-4x) \\ y=\sqrt[]{-4x} \end{gathered}[/tex]3rd: A horizontal translation 8 units to the left:
[tex]\begin{gathered} y=g(x+8) \\ y=\sqrt[]{-4x+8}=\sqrt[]{8-4x} \end{gathered}[/tex]4th: A reflection over y-axis:
[tex]\begin{gathered} y=-g(x) \\ y=-\sqrt[]{8-4x} \end{gathered}[/tex]5th: A vertical compression:
[tex]\begin{gathered} y=\frac{1}{4}g(x) \\ y=-\frac{1}{4}\sqrt[]{8-4x} \end{gathered}[/tex]6th: A vertical translation 1 unit up:
[tex]\begin{gathered} y=g(x)+1 \\ y=-\frac{1}{4}\sqrt[]{8-4x}+1 \end{gathered}[/tex]d)
Where the blue graph is the parent function:
[tex]g(x)=\sqrt[]{x}[/tex]And the red graph is the function after the transformations:
[tex]f(x)=-\frac{1}{4}\sqrt[]{8-4x}+1[/tex]e)
The domain and the range are:
[tex]\begin{gathered} D\colon\mleft\lbrace x\in\R\colon x\le2\mright\rbrace \\ R\colon\mleft\lbrace y\in\R\colon y\le1\mright\rbrace \end{gathered}[/tex]