tenth root of the quantity x to the fifth times x to the fourth times x squared end quantity

Given:
[tex]\sqrt[10]{x^5\times x^4\times x^2}[/tex]To Determine: The simplification of the given
Solution
Given the exponent rule below
[tex]a^m\times a^n=a^{m+n}[/tex]Applying the rule to the given
[tex]\sqrt[10]{x^5\times x^4\times x^2}=\sqrt[10]{x^{5+4+2}}=\sqrt[10]{x^{11}}[/tex]Given the exponent rule below
[tex]\sqrt[m]{a^n}=a^{\frac{n}{m}}[/tex]Applying the exponent rule to the given
[tex]\begin{gathered} \sqrt[10]{x^5x^4x^2}=\sqrt[10]{x^{11}}=x^{\frac{11}{10}} \\ Therefore \\ \sqrt[10]{x^5x^4x^2}=x^{\frac{11}{10}} \end{gathered}[/tex]The answer is
[tex]x^{\frac{11}{10}}[/tex]