Which equation best fits the data in the table?A. y=1040(2)^xB. y=1040(1/2)^xC. y=520(1/2)^xD. y=1/2(1040)^x

Answer:
[tex]B\text{.}y=1040(\frac{1}{2})^x[/tex]Explanation:
On observation, the data on the table represents an exponential function.
An exponential function is a function of the form:
[tex]y=ab^x[/tex]When the number of hours, x=0
The number of parasites, y =1,040
[tex]\begin{gathered} 1040=a\times b^0 \\ \implies a=1,040 \end{gathered}[/tex]When the number of hours, x=1
The number of parasites, y =520
[tex]\begin{gathered} 520=1,040\times b^1 \\ b=\frac{520}{1040} \\ b=\frac{1}{2} \end{gathered}[/tex]Thus, the equation that best fits the table is:
[tex]y=1040\mleft(\frac{1}{2}\mright)^x[/tex]The correct choice is B.