Respuesta :

Given the shown triangle

Using the pithagorean theorem

[tex]AB^2=9^2+12^2[/tex][tex]AB=\sqrt{81+144}[/tex][tex]AB=15[/tex]

AB=15

Using law of sines

[tex]\frac{a}{sin(A)}=\frac{b}{Sin(B)}=\frac{c}{sin(C)}[/tex][tex]\frac{12}{sin(A)}=\frac{9}{Sin(B)}=\frac{15}{sin(90)}[/tex]

Solving for A

[tex]\frac{12}{Sin(A)}=\frac{15}{sin(90)}[/tex][tex]\frac{12}{15}=Sin(A)[/tex][tex]A=ArcSin(\frac{4}{5})[/tex][tex]A=53.13[/tex]

A=53.13°

Solving for B

[tex]\frac{9}{S\imaginaryI n(B)}=\frac{15}{s\imaginaryI n(90)}[/tex][tex]\frac{9}{15}=Sin(B)[/tex][tex]B=ArcSin(\frac{3}{5})[/tex][tex]B=36.87[/tex]

B=36.87°

RELAXING NOICE
Relax