The data set is:
[tex]\mleft\lbrace5,6,7,10,8,4\mright\rbrace[/tex]a) The variance of a data set is given by the formula:
[tex]s^2=\frac{1}{N-1}\sum ^N_{n\mathop=1}(a_n-\operatorname{mean})^2[/tex]Where s^2 is the variance and P(a_n) is the probability of the value a_n.
First, we need to calculate the mean of the data set:
[tex]\operatorname{mean}=\frac{(5+6+9+10+8+4)}{6}=\frac{42}{6}=7[/tex]Now, the variance is:
[tex]s^2=\frac{1}{6}\lbrack(5-7)^2+(6-7)^2+(9-7)^2+(10-7)^2+(8-7)^2+(4-7)^2\rbrack[/tex]Then,
[tex]s^2=\frac{28}{5}=5.6[/tex]Therefore, the variance is equal to 5.6
b) As for the standard deviation, we simply need to get the square root of the variance. Then,
[tex]\text{Standard deviation}=\sqrt[]{s^2}=\sqrt[]{5.6}\approx2.3664[/tex]The standard deviation is 2.3664 approximately