Respuesta :

[tex]f(x)=2x^2-3x+2[/tex]

To find the instantaneous rate of change:

1. Find the derivate of f(x):

[tex]\begin{gathered} \frac{d}{dx}ax^n=a*nx^{n-1} \\ \\ \frac{d}{dx}a=0 \\ \\ \\ \frac{d}{dx}f(x)=2*2x^{2-1}-3x^{1-1}+0 \\ \\ \frac{d}{dx}f(x)=4x-3 \\ \\ f^{\prime}(x)=4x-3 \end{gathered}[/tex]

2. Evaluate the derivate of f(x) for x=0:

[tex]\begin{gathered} f^{\prime}(0)=4(0)-3 \\ f^{\prime}(0)=0-3 \\ f^{\prime}(0)=-3 \end{gathered}[/tex]

The instantaneus rate of change at x=0 of f(x) is the value of the derivate f'(x) evaluated in x=0.

Then, the instantaneus rate of change at x=0 is -3

ACCESS MORE
EDU ACCESS
Universidad de Mexico