Give the Grade 10 students the numbers 1,2,...,8, and for
[tex]i\in\lbrace1,...,8\rbrace[/tex]Let
[tex]X_i\text{ = 1}[/tex]if the Grade 10 student with the number i is chosen.
On the other hand, let
[tex]X_i\text{ = 0}[/tex]otherwise. Then:
[tex]X\text{ : = X}_{1\text{ }}+\text{ .... + X}_8[/tex]is the number of Grade 10 students that are chosen.
With linearity of expectation and symmetry we find:
[tex]EX=8EX_1\text{ = 8Pr\lparen X}_1=1\text{\rparen}[/tex]In total there are 14 students and 4 of them will be chosen, so:
[tex]Pr(X_1=1)=\frac{4}{14}=\frac{2}{7}[/tex]So we end up with:
[tex]EX=\frac{16}{7}[/tex]We can conclude that the correct answer is:
Answer:[tex]\frac{16}{7}[/tex]