Given the recursive rule:
[tex]L_{n+1}=L_n+24[/tex]With an initial population of:
[tex]L_o=7[/tex]Let's determine the next five terms.
Since the first term is 7,
• For the L1, substitute 0 for n and solve:
[tex]\begin{gathered} L_{0+1}=L_0+24 \\ \\ L_1=7+24 \\ \\ L_1=31 \end{gathered}[/tex]• For L2, substitute 1 for n and solve:
[tex]\begin{gathered} L_{1+1}=L_1+24 \\ \\ L_2=31+24 \\ \\ L_2=55 \end{gathered}[/tex]• For L3, substitute 2 for n and solve:
[tex]\begin{gathered} L_{2+1}=L_2+24 \\ \\ L_3=55+24 \\ \\ L_3=79 \end{gathered}[/tex]• For L4, substitute 3 for n and solve:
[tex]\begin{gathered} L_{3+1}=L_3+24 \\ \\ L_4=79+24 \\ \\ L_4=103 \end{gathered}[/tex]• For L5, substitute 4 for n and solve:
[tex]\begin{gathered} L_{4+1}=L_4+24 \\ \\ L_5=103+24 \\ \\ L_5=127 \end{gathered}[/tex]ANSWER:
• L1 = 31
,• L2 = 55
,• L3 = 79
,• L4 = 103
,• L5 = 127