We can use the quadratic formula to solve this equation:
[tex]x=\frac{-b}{2a}+/-\frac{\sqrt[]{b^2-4ac}}{2a}[/tex]Then, we have:
a = 1
b = -14
c = 58
Thus
[tex]x=\frac{-(-14)}{2\cdot1}+\frac{\sqrt[]{(-14)^2-4(1)(58)}}{2\cdot1}\Rightarrow x=\frac{14}{2}+\frac{\sqrt[]{196-232}}{2}[/tex]As we can see, the result will be a complex number solution:
[tex]x=7+\frac{\sqrt[]{-36}}{2}\Rightarrow x=7+\frac{\sqrt[]{36i^2}}{2}\Rightarrow x=7+\frac{\sqrt[]{36}}{2}i\Rightarrow x=7+\frac{6}{2}i\Rightarrow x=7+3i[/tex]We have to remember that:
[tex]i^2=-1[/tex]Then, one of the solution is x = 7 + 3i. Therefore, according to the quadratic formula, the other solution is x = 7 - 3i.
The solutions are x = 7 + 3i and x = 7 - 3i.