In the right - angled triangle shown, cos 0 equal to?

In a rigth triangle:
θ
The cosine ratio is:
[tex]\cos\theta=\frac{adjacent}{hypotenuse}[/tex]In the triangle given, we don't know the length of the adjacent leg to θ. We can find it using the pythagorean theorem:
[tex]hypotenuse^2=adjacent^2+opposite^2[/tex]In this case:
hypotenuse = 13
opposite = 12
Then:
[tex]13^2=adjacent^2+12^2[/tex]And solve:
[tex]\begin{gathered} adjacent^2=13^2-12^2 \\ . \\ adjacent^2=169-144 \\ . \\ adjacent=\sqrt{25} \\ . \\ adajcent=5 \end{gathered}[/tex]Now, we can find the cosine ratio:
[tex]\cos\theta=\frac{5}{13}[/tex]