Given data:
[tex]P(x)=x^3-5x^2+7x-3[/tex]If (x-1) is a facotr of the given function then we will get,
[tex]\frac{x^3-5x^2+7x-3}{x-1}=x^2-4x+3[/tex][tex]x^3-5x^2+7x-3=(x^2-4x+3)(x-1)[/tex]Now, factorizing the quadratic equation,
[tex]\begin{gathered} x^2-4x+3=x^2-3x-x+3 \\ =x(x-3)-1(x-3) \\ =(x-3)(x-1) \end{gathered}[/tex]Thus, the complete fatorization for P(x) is
[tex]x^3-5x^2+7x-3=(x-3)(x-1)(x-1)[/tex]Answer : Option (B)