it has been determined with 95% confidence that the proportion of on-line students at spc who live in pinellas county is between 0.73 and 0.77. determine the margin of error associated with this confidence interval.

Respuesta :

The margin of error associated with the confidence interval is 0.02.

The 95% confidence interval for the population proportion is defined as:

p ± z(0.05 / 2) × √[p ( 1 − p )/ n]

We have,

p − z(0.05 / 2) × √[ p ( 1 − p )/ n ] = 0.73                                     ----------- ( 1 )

p + z(0.05 / 2) × √[ p ( 1 − p )/ n ] = 0.77                                    ----------- ( 2 )

Adding the above two equations,

p − z(0.05 / 2) × √[ p ( 1 − p )/ n ] + p + z(0.05 / 2) × √[ p ( 1 − p )/ n ] = 0.73 + 0.77

2p = 0.73 + 0.77

2p = 1.5

p = 0.75

Now, Subtracting the equations ( 1 ) and (2),

We get,

p − z(0.05 / 2) × √[ p ( 1 − p )/ n ] - p - z(0.05 / 2) × √[ p ( 1 − p )/ n ] = 0.73 - 0.77

−2 × z(0.05 / 2) × √[ p ( 1 − p )/ n ] = -0.44

z( 0.10 / 2) × √[ p ( 1 − p )/ n] = 0.02

The margin of error is defined by the formula:

M E = z(0.05 / 2) × √[ p ( 1 − p )/ n]

Therefore, The margin of error will be:

M E = 0.02

Learn more about margin of error here:

brainly.com/question/10218601

#SPJ4

RELAXING NOICE
Relax