Respuesta :

The Law of Sines states that:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Procedure

0. Using the Law of Sines to ,find C

[tex]\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

As we have the values of all variables but C, we isolate for it:

[tex]\sin C=\frac{\sin B}{b}[/tex]

[tex]C=\sin ^{-1}(\frac{\sin B}{b}\cdot c)[/tex]

Replacing the values:

[tex]C=\sin ^{-1}(\frac{\sin34}{21}\cdot26)[/tex]

[tex]C=\sin ^{-1}(0.6923)[/tex]

[tex]C=43.82[/tex]

2. Calculating A

Then, knowing that all the interior angles of a triangle add up to 180°...

[tex]A+B+C=180[/tex]

...we can isolate for A:

[tex]A=180-B-C[/tex]

Replacing the values given for B and the value of C:

[tex]A=180-34-43.82[/tex]

[tex]A=102.18[/tex]

3. Calculating a

Now that we know A, we can find a using the Law of Sines:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}[/tex]

Isolating for a we get:

[tex]a=\frac{\sin A}{\frac{\sin B}{b}}[/tex]

Replacing the values:

[tex]a=\frac{\sin 102.18}{\frac{\sin 34}{21}}[/tex]

[tex]a=36.71[/tex]

Answer:

• C = 43.82°

,

• A = 102.18°

,

• a = 36.71

ACCESS MORE
EDU ACCESS
Universidad de Mexico