The Law of Sines states that:
[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]Procedure
0. Using the Law of Sines to ,find C
[tex]\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]As we have the values of all variables but C, we isolate for it:
[tex]\sin C=\frac{\sin B}{b}[/tex][tex]C=\sin ^{-1}(\frac{\sin B}{b}\cdot c)[/tex]Replacing the values:
[tex]C=\sin ^{-1}(\frac{\sin34}{21}\cdot26)[/tex][tex]C=\sin ^{-1}(0.6923)[/tex][tex]C=43.82[/tex]2. Calculating A
Then, knowing that all the interior angles of a triangle add up to 180°...
[tex]A+B+C=180[/tex]...we can isolate for A:
[tex]A=180-B-C[/tex]Replacing the values given for B and the value of C:
[tex]A=180-34-43.82[/tex][tex]A=102.18[/tex]3. Calculating a
Now that we know A, we can find a using the Law of Sines:
[tex]\frac{\sin A}{a}=\frac{\sin B}{b}[/tex]Isolating for a we get:
[tex]a=\frac{\sin A}{\frac{\sin B}{b}}[/tex]Replacing the values:
[tex]a=\frac{\sin 102.18}{\frac{\sin 34}{21}}[/tex][tex]a=36.71[/tex]Answer:
• C = 43.82°
,• A = 102.18°
,• a = 36.71