simply the expression. write your answers using only positive exponents.

We can apply the exponent rules to solve this problems.
2) In this case we have to convert the negative exponent into a positive exponent. We can do it like this:
[tex]y^{-5}=\frac{1}{y^5}[/tex]3) In this case we applied the same rule as in (2) for the y exponent:
[tex]9x^6y^{-3}=9x^6\cdot\frac{1}{y^3}=\frac{9x^6}{y^3}[/tex]4) In this case, we can simplify the expression as:
[tex]\frac{5^6}{5}=\frac{5^6}{5^1}=5^6\cdot5^{-1}=5^{6-1}=5^5=3125[/tex]5) We apply the product rule:
[tex]4^{-3}\cdot4^5=4^{-3+5}=4^2=16[/tex]6) We apply the power rule:
[tex](w^5)^7=w^{5\cdot7}=w^{35}[/tex]7) We can simplify this as:
[tex](-5z)^3=(-5)^3\cdot z^3=-125z^3[/tex]